
SCIENCE CHINA
Information Sciences

July 2022, Vol. 65 170307:1–170307:2

https://doi.org/10.1007/s11432-021-3415-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. LETTER .
Special Focus on Cyber Security in the Era of Artificial Intelligence

ACCEL: an efficient and privacy-preserving federated
logistic regression scheme over vertically

partitioned data

Jiaqi ZHAO1, Hui ZHU1*, Fengwei WANG1, Rongxing LU2, Hui LI1,

Zhongmin ZHOU3 & Haitao WAN3

1State Key Laboratory of Integrated Networks Services, Xidian University, Xi’an 710071, China;
2Faculty of Computer Science, University of New Brunswick, Fredericton E3B 5A3, Canada;

3China Mobile (Suzhou) Software Technology Co., Ltd., Suzhou 215153, China

Received 29 August 2021/Revised 27 December 2021/Accepted 24 January 2022/Published online 22 June 2022

Citation Zhao J Q, Zhu H, Wang F W, et al. ACCEL: an efficient and privacy-preserving federated logistic

regression scheme over vertically partitioned data. Sci China Inf Sci, 2022, 65(7): 170307, https://doi.org/10.1007/

s11432-021-3415-1

Dear editor,

With the age of big data coming, massive data are be-

ing generated distributedly all the time and stored as the

form of data islands; meanwhile, data privacy and secu-

rity are strengthened with the introduction of some privacy

laws, which thus bring huge challenges to traditional cen-

tralized machine learning. Consequently, federated learning

(FL) [1], which can construct global machine learning mod-

els over multiple participants while keeping their data local-

ized, gains widespread attention and shows its vast prospects

in many fields [2]. At each training round of FL, the local up-

dates are calculated locally with participants’ training data,

which are further aggregated by a server to update the global

model until it converges.

Nevertheless, there are still some challenging issues in

FL. On the one hand, in most scenarios, the data held by

different participants share the common users but differ in

features (i.e., vertically partition [3]), which causes difficul-

ties in constructing global models. On the other hand, the

uploaded local updates still contain data information and

can be used to infer or even recover raw training data, which

threatens the users’ privacy considerably.

To tackle these challenges, massive FL schemes have

been proposed, which are mainly based on homomorphic en-

cryption (HE) or differential privacy (DP). Unfortunately,

massive complex calculations of traditional HE will cause

unacceptable computational cost, meanwhile, added noises

in DP schemes will reduce the model accuracy inevitably.

Moreover, it is noteworthy that only a few FL existing

schemes [4,5] support vertical model training, and they only

support two-party model training and are less efficient.

In this study, we propose an efficient and privacy-

preserving federated logistic regression scheme over verti-

cally partitioned data, namely ACCEL. With ACCEL, mul-

tiple participants, which have vertically partitioned data,

can train a high-accuracy logistic regression model securely

and efficiently. Specifically, by combining our proposed data

aggregation matrix construction algorithm and a symmetric

homomorphic encryption (SHE) [6] technique, local training

data and global model can be protected well from inference

attacks in the whole training process. Meanwhile, multi-

round interactions between the cloud service provider and

participants are not required in ACCEL, which reduces the

training overhead significantly.

System model. ACCEL consists of two parties, namely

the participant and cloud service provider (CSP). CSP is a

cloud service provider with powerful storage and comput-

ing capability. Each Pk ∈ {P1, P2, . . . , PK} is a participant

with vertically partitioned data and can connect with CSP.

Without loss of generality, we assume that PK is the ini-

tiator who has the data labels and obtains the final global

model.

Description of ACCEL. The proposed ACCEL mainly

contains four phases described in the following. Moreover,

some preliminaries are introduced in Appendix A.

• System initialization. In this phase, initiator PK first

selects the security parameters (k0, k1, k2) and generates the

public parameter PP and secret key SK of SHE. Then, for

each Pk (k ∈ [1,K − 1]), PK generates a ciphertext pair

{Enc(0)0,Enc(0)1} by encrypting value 0 with SK, which is

sent to corresponding participant Pk. Finally, PK randomly

initializes the global model θ(0) = (θ
(0)
0 , θ

(0)
1 , . . . , θ

(0)
D

) and

the training hyperparameters containing learning rate α,

regularization parameter λ, and accuracy parameter κ.

• Data preprocessing and outsourcing. In this phase, lo-

cal training data D(1), . . . ,D(K) are first preprocessed via

entity resolution and data normalization, which can be rep-

resented as D(k) = [X
(k)
1 , . . . ,X

(k)
N

]
T
, where X

(k)
n = [x

(k)
n,1,

. . . , x
(k)
n,Dk

] and X
(K)
n = [x

(K)
n,1 , . . . , x

(K)
n,DK

, yn]. After that,
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all data values of Dk are float numbers between 0 and 1,

which should first be expanded to an integer through com-

puting x
(k)
n,d
← ⌊κ · x

(k)
n,d
⌋ and yn ← κ · yn. Then, PK calcu-

lates V(K) andM(K) as

v
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κ ·
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Pk (k ∈ [1,K − 1]) calculates V(k) andM(k) as
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Finally, each element x in V(k),M(k), and D(k) is encrypted

as JxK = x⊕ (r0 ⊙ Enc(0)0)⊕ (r1 ⊙ Enc(0)1) and is sent to

CSP, where r0, r1 are two random numbers, and ⊕,⊙ rep-

resent the homomorphic addition and multiplication.

• Data aggregation matrix construction. In this

phase, CSP first calculates the data aggregation submatrix

JM(u,v)K over ciphertexts. When 1 6 u < v 6 K − 1,

Jm
(u,v)
i,j K ∈ JM(u,v)K is calculated as

⊕N

n=1
Jx

(u)
n,i K⊙ Jx

(v)
n,jK, i ∈ [1,Du], j ∈ [1,Dv].
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Then, CSP constructs the data aggregation matrix JMK as
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and sends it to PK for model training and estimating.

• Global model training and estimation. In this phase,

PK decrypts received JMK as Dec(JMi,jK)/κ2. Then, PK

deletes the last row ofM and fills the first element with N .

After that, M is rewritten as M = [A|B] and the last row

of M is B. Finally, PK trains the global model iteratively

by executing θ(r+1) = (1 − 2λα)θ(r) − α
N
( 1
4
θ(r)A− 1

2
BT).

After a certain number of training rounds, PK computes

the loss as L(θ) = log2 − 1
2N

LB + 1
8N

LA + λ ‖θ‖2, where

LA = SUM(θTθ ◦A), LB = θB, ◦ represents the Hadamard

product, and SUM is the matrix summation. When L(θ) is

judged to convergence, PK obtains the final model.

Security analysis. In our threat model, we assume that

CSP and all participants are honest-but-curious; i.e., they

are obliged to execute the protocol process honestly, but try

to deduce the model or data information as much as pos-

sible through observing intermediate parameters alone or

even collusively. Based on the CPA-secure of SHE [7] and

the theory of the linear equations, we demonstrate that our

ACCEL can well protect the data and model privacy under

the above threat assumption.

Experimental evaluation. We conduct experiments on a

workstation with an Intel(R) Xeon(R) Gold 6226R CPU

and 256.0 GB RAM. The security parameters are set as

k0 = 1024, k1 = 20, and k2 = 200. We first test the

model accuracy on three real-world classification datasets

and make a comparison with centralized training. The re-

sults show that, the prediction accuracy and loss value of

ACCEL and centralized training are very close, although the

convergence speed of ACCEL is slightly slower. Then, we

evaluate the computational cost and communication over-

head with generated synthetic datasets, and make a com-

parison with [4, 5]. The results demonstrate that, ACCEL

has a 270× speedup of computational cost (Figure 1) and

an up to 23× improvement of communication overhead.
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Figure 1 (Color online) Computational cost comparison.

Conclusion. In this study, we have proposed ACCEL, an

efficient and privacy-preserving federated logistic regression

scheme over vertically partitioned data. Security analysis

shows that ACCEL can resist various inference attacks. In

addition, the extensive experiments demonstrate that AC-

CEL has high accuracy for model training and low overhead

for both computation and communication.
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